SYNTHESIS AND CRYSTALLOGRAPHIC CHARACTERISATION OF $(SbF^{2+})(SbF_{6^-})_2$, AsF₃, $(Sn^{2+})(SbF_{6^-})_2$, 2AsF₃ AND $(AsF_{2^+})_2(Sb_2O_2F_8^{2^-})$, 2AsF₃

A. J. Edwards* and K. I. Khallow

Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham B15 2TT (U.K.)

The interaction of SbF_3 with excess SbF_5 , and SnF_2 with excess SbF₅, formed compounds, but single crystals for structure determination were difficult to obtain from ${\rm SbF}_5$ solution. When ${\rm AsF}_3$ was added to the reaction mixture, the products proved to be more tractable and crystals incorporating AsF₃ were produced. For SbF₃, the adduct obtained contains the highest ratio of Sb(V) : Sb(III) yet produced, 2:1, and is best formulated $(SbF^{2+})(SbF_6^{-})_2$, AsF₃, although there are extensive fluorine bridging interactions in the crystal. The overall coordination of the Sb(III) atom is based on a pentagonal bipyramid, if the lone pair of electrons is included, with the bonded fluorine atom and the lone pair in axial positions. A fluorine atom from the AsF3 molecule fills one of the coordination positions. This coordination is very similar to that of one Sb(III) atom in $(SbF_3)_2(SbF_5)_2$ [R.J. Gillespie, D.R. Slim and J.E. Vekris, J. Chem. Soc. Dalton Trans., 1977, 971]. For SnF₂, the adduct has a 2:1 ratio for Sb(V) : Sn(II) and is best formulated $(Sn^{2+})(SbF_6^{-})_2$, 2AsF₃. The Sn²⁺ formulation is confirmed by the 119Sn Mössbauer spectrum of the compound, with a peak with chemical shift 4.59 and no detectable quadrupole splitting, very close to values previously reported for a "bare" Sn^{2+} ion (4.44 in $Sn(SbF_6)_2$ [T. Birchall, P.A.W. Dean and R.J. Gillespie, J. Chem. Soc. (A), 1971, 1777] and 4.55 in $(Sn(15-crown-5)^{2+}_2)$ [R.H. Herber and G. Carrassquillo, Inorg. Chem., 1981, 20, 3693]. Although there were no crystallographic data for the previously reported examples, we find a tricapped trigonal prismatic coordination for the Sn atom, with average Sn...F at 2.58 A, and with a distortion in the arrangement which we tentatively assign to the effect of the lone pair of electrons. From this preparation we also isolated a crystal, which structure analysis has shown to be the compound $(AsF_2^+)_2$ $(Sb_20_2F_8^{2-})$, 2AsF₃. The anion contains a di-µ-oxo bridge, characteristic of oxide fluorides of elements in this part of the Periodic Table, although previously only trinuclear Sb anions had been found [W. Haase, Acta Cryst., 1974, B30, 2465].

460

I-38